

Technical Assistance Studies

Stephen Szczechura

Energy Efficiency Consultant
stephen.szczechura@eversource.com

Jeremy Blanchard CEM
Senior Project Manager
Jeremy.Blanchard@gdsassociates.com

We look forward to hearing from you

Please put all your questions into the questions section with this icon.

Agenda

1

Strategic Partnerships

NHSaves values strategic partnership to drive energy efficiency projects

2

What?

Overview of TA Studies and how the energy efficiency program can support customers

3

Why?

Demonstrate benefit to customers and business partners

4

How?

Outline the TA study process, and some best practices

Benefits of Utility Strategic Partnerships

- Allows for a multifaceted approach in providing integrated solutions to C&I customers unique needs
- Utility companies' energy efficiency programs have a wealth of resources and expertise enabling your organization to develop more effective programs and strategies
- Provide access to incentives and funding opportunities to support your energy efficiency initiatives
- A strategic partnership can help organizations align their operations with long-term sustainability goals, contributing positively to corporate social responsibility (CSR) initiatives.

What are TA studies?

- Detailed comprehensive studies covering one or more beyond-lighting custom measures
- Co-funded by customer and the Utility's energy efficiency programs
- Requires detailed calculations and turnkey costs
- May include metering, data logging, trend data collection or other sources of data
- Baseline and proposed case validation
- Examples of measures

Improvements

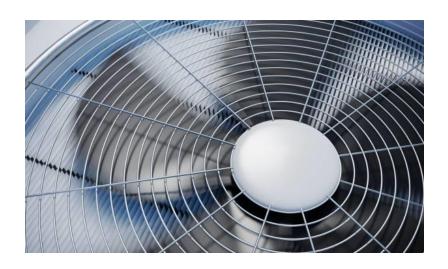
Hot Water Boilers

Steam Boilers

Boiler Plant

Chiller Plant Improvements

Energy Management Systems


	Humidity Enthalpy
Flo	or Plans
First Flo	oor Overview
Firs	st Floor A
Firs	st Floor B
Firs	t Floor C
Firs	t Floor D
Firs	t Floor E
Second	Floor Overvie
Seco	nd Floor A
Seco	nd Floor B
Seco	nd Floor C
Seco	nd Floor D

Freezer Temp 7 °F	
Energy Meterin Kitchen Gas Meter	14,501,6
RTU's High Roof Gas Meter	10,919,1
Boilers Gas Meter	6,314,2
RTU's Lower Roof Gas Meter	6,199,8

Chilled Water System	65 °F	79 °F	Inactive
RTU-1 B Wing 123 - 133	70 °F	72 °F	On
RTU-2 B Wing 135 - 145	72 °F	72 °F	On
RTU-3 D Wing 149 - 157	69 °F	73 °F	On
RTU-4 D Wing 161 - 171	71 °F	72 °F	On
RTU-5 B Wing 120 - 122	70 °F	73 °F	On
RTU-6 D Wing 160 - 164	71 °F	69 °F	On
RTU-7 Band Room	69 °F	74 °F	On
RTU-8 Auditorium Stage	72 °F	68 °F	On
RTU-9 Auditorium	70 °F	67 °F	On
RTU-10 Cafeteria	71 °F	74 °F	On
RTU-11 Library	71 °F	70 °F	On
RTU-12 Admin 101 - 113	70 °F	72 °F	On
RTU-13 Weight Room	65 °F	72 °F	On
RTU-14 Gym Locker Rooms	69 °F	80 °F	On
RTU-15 Gymnasium	75 °F	74 °F	On
RTU-16 Gymnasium	75 °F	74 °F	On
RTU-17 Kitchen	78 °F	72 °F	On
RTU-18 Senior Annex	72 °F	68 °F	On

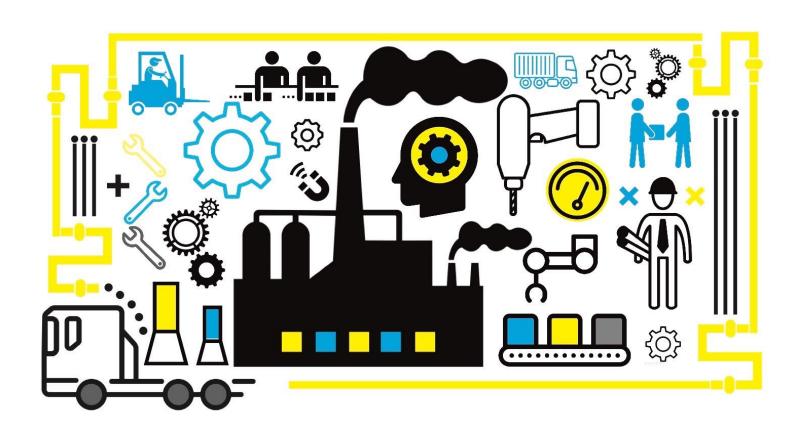
Heating, Ventilating, and Air Conditioning (HVAC)

Not including boilers, chillers, and EMS

Building Envelope

Chilled Water, Hot Water, and **Steam Distribution Systems**

Electric Motors and Drives


Refrigeration

Distributed Generation

Energy-Related Process Improvements

Why complete a TA Study?

- Provide customer with technical support to define scope, cost and energy savings
- Develop multi-year capital projects plan with firm savings/costs/payback
- Require detailed energy savings analysis, metering and auditing to evaluate baseline and proposed cases
- Approval for energy efficiency incentive from the Utility
- Assist energy efficiency program achieve its savings goals
- Intended for large savings projects generally with a high cost

- Contractor
- Scoping Study

Identify Opportunity

Development Support

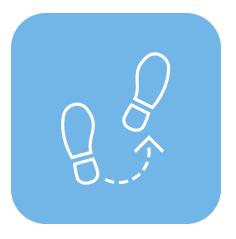
- Streamlined
- TA Study

- Select Scope
- Costs/Savings
- Incentive Offer

Implement Solution(s)

Program Funded Scoping Study

Identify Efficiency Opportunities


Perform high level onsite walkthrough

Identify energy conservation measures (ECMs)

Discuss ECM opportunities with customer

Define project development next steps

Scoping Study Project Example

Interested in carbon reduction and energy efficiency

142,000 ft² industrial facility

Water cooled process and HVAC chillers, boilers, 25 large AHUs, several process lines with nearly 600 kW of fans

Low hanging measures completed, process, energy management system and HVAC focus

Scoping Study RCx Results

Priority measures presented with high level costs and savings. Additional 14 measures highlighted for follow up.

ECM Name	Cost	Annual Electric Savings (kWh)	Annual Gas Savings (Therms)	Annual Cost Savings	Simple Payback (years)
ECM-1: Electric Process Heat Recovery	\$300,000	310,000	0	\$52,700	5.7
ECM-2: Process Chilled Water Economizer	\$150,000	260,000	0	\$44,200	3.4
ECM-3: Integrate MAU and Exhaust Fans to Process	\$100,000	80,000	6,300	\$19,963	5.0
ECM-4: Retro-Commissioning	\$150,000	350,000	14,000	\$73,640	2.0
ECM-5: High Efficiency Humidifiers	\$100,000	-56,000	19,000	\$9,670	10.3
Total	\$800,000	944,000	39,300	\$200,173	4.0

TA study currently underway. Metering of process lines recently removed.

How do we complete a TA Study?

- Submit application and proposal for preapproval
- Contact your utility representative for list of preferred vendors. Customers may choose their own vendor with approval from the Utility.
- Initial introduction and kick-off meeting
- Site visit, and subsequent engineering work
- Identify comprehensive opportunities based on customer's interest/capital

How do we complete a TA Study?

- Deliver report, transparent analysis, equipment specifications, quotes, and minimum requirements document (MRD)
- Review and approval by utility representative
- Submit custom application for each measure customer is interested in implementing
- Issue incentive offer for each measure
- Complete work and incentive delivered (post inspection possible)

TA Study Project Example

Strategic partnership with the customer's sustainability team.

500,000 ft² industrial facility

Laboratories, clean rooms, testing and manufacturing areas

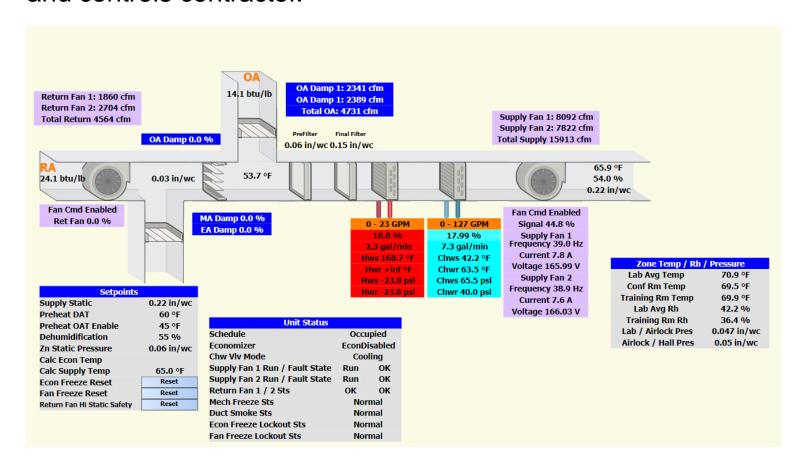
Focus on 28,000 ft² lab area with 5 large AHUs

Program Co-Funded TA Study

Project Development Support

Perform detailed energy audit

Partner with contractors/vendors to develop scope


Develop costs and savings for ECMs

Provide program documentation for incentive offer

TA Study RCx

Identified several sequences of operation in partnership with customers internal team and controls contractor.

Preheating and cooling simultaneously because of inefficient sequence and setpoints

TA Study RCx Sequences of Operation

Unit	1. SAT Reset	2. Leaking CHW Valve	3. VFD Airflow Turndown	4. Airflow CFM Balancing	5. Static Press. Optimization	6. AHU Rebalancing	7. Economizer	8. OA Reduction	9. PH Pump Control	10. RH Optimization	11. PH Optimization	12. Zone Double Cooling
AHU-1	Χ	X	Χ		X	X		Χ		X		
AHU-2	Χ		Χ		X	Χ		Χ		Χ		
AHU-3	Χ			X			Χ	Χ	X	X	Χ	
AHU-4	X			Χ			Χ	Χ	Χ	Χ	Χ	Χ
AHU-5				Χ			Χ	Χ	Χ	Χ	Χ	

TA Study RCx Results

Significant energy savings from only 5 AHUs

ECM Name	Cost	Annual Electric Savings (kWh)	Annual Gas Savings (Therms)	Incentive Offer	Annual Cost Savings	Simple Payback (years)
ECM-1: Retrocommissioning	\$199,216	747,432	95,037	\$64,448	\$223,051	0.6

Customer is planning to perform similar RCx across other AHUs

Thanks for listening.

